LESSON PLAN 2. SUBJECT : PHYSICS CLASS: XI

UNIT III: KINEMATICS

BRIEF DESCRIPTION- CONCEPT OF GENERAL EQNS OF MOTION, RELATIVE VELOCITY, DIFFERENT TYPES OF GRAPHS, VECTORS AND ITS APPLICATIONS, PROJECTILE MOTION AND ITS TYPES

KPI DEFINITION :

KPI 01: Students face problems in solving the problems based on oblique projectile.

KPI 02 : Students face problems in solving numerical portion/ mathematical calculations on relative velocity

KPI 03 : Students Face problem in solving problems based on general equation of motion.

KPI 04: students face problem in framing a particular diagram/graph for any particular set of problems.

KPI 05: Students wont be able to understand the general properties related with vectors.

OBJECTIVES:

SUBJECTIVE

- 1. "Explain the fundamental concepts of kinematics, including displacement, velocity, and acceleration, and illustrate their significance in describing motion."
- 2. "Analyze and interpret position-time graphs and velocity-time graphs to describe the motion of objects."
- 3. "Apply the equations of uniformly accelerated motion to solve problems related to motion in one dimension."
- 4. "Discuss the difference between speed and velocity and how they relate to motion in both one and two dimensions."
- 5. "Examine and explain the concept of relative motion in various scenarios, such as vehicles on a road.

BEHAVIORIAL

- 1. **Analyze Motion:** Observe, describe, and analyze the motion of objects in one and two dimensions, including their ability to differentiate between scalar and vector quantities.
- 2. **Interpret Graphs:** Interpret position-time graphs and velocity-time graphs to make predictions about an object's motion and calculate key parameters.
- 3. **Apply Equations of Motion:** Apply the equations of uniformly accelerated motion to solve problems related to displacement, velocity, acceleration, and time in one-dimensional motion.
- 4. **Calculate Average and Instantaneous Velocity:** Calculate average velocity and determine instantaneous velocity at specific points in time.
- 5. **Utilize Vector Addition:** Apply vector addition techniques to determine resultant velocities in cases of two-dimensional motion.
- 6. **Communicate Findings:** Communicate their understanding effectively through written explanations, diagrams, and verbal presentations.
- 7. **Problem-Solve:** Apply critical thinking and problem-solving skills to real-world scenarios involving motion.
- 8. **Use Units and Conventions:** Use appropriate units and conventions when expressing physical quantities and equations related to kinematics.
- 9. **Demonstrate Safe Laboratory Practices:** Follow safety protocols when conducting experiments related to kinematics and data collection."

ASSESSMENT:

1. Written Examinations:

• Create written tests with a variety of question types, including multiple-choice, short-answer, and essay questions, covering key kinematics concepts such as displacement, velocity, acceleration, and equations of motion.

2. Graphical Analysis:

• Provide position-time graphs or velocity-time graphs and ask students to interpret and draw conclusions about an object's motion from these graphs.

3. Practical Experiments:

- Conduct experiments to measure and analyze kinematic quantities, such as displacement, velocity, and acceleration.
- Assess students based on their experimental skills, data analysis, and ability to draw conclusions from experimental results.
- 4. Problem Solving and Calculations:

- Assign problems that require students to apply kinematic equations to solve problems related to motion in one dimension.
- Evaluate students on their problem-solving skills and the correct use of formulas and units.

5. Project Work:

- Assign projects that involve real-world applications of kinematics, such as analyzing the motion of vehicles or projectiles.
- Assess projects based on research, data collection, analysis, and presentation of findings.

6. Oral Assessments:

- Conduct oral quizzes or presentations where students explain kinematics concepts and solve problems verbally.
- Evaluate students' ability to communicate complex ideas clearly.

7. Homework and Assignments:

- Assign regular homework and assignments that reinforce theoretical concepts and calculations.
- Provide feedback on homework to help students improve their understanding.

8. Class Participation:

• Assess students' engagement in class discussions, question-andanswer sessions, and peer teaching activities related to kinematics.

9. Formative and Summative Assessments:

• Use formative assessments (ongoing evaluations) to gauge understanding during the learning process and summative assessments (final exams or projects) to evaluate overall mastery of the subject.

10. Online Quizzes and Interactive Simulations:

• Use online platforms for interactive quizzes and simulations to engage students and reinforce kinematics concepts.

11. Group Work and Collaboration:

• Encourage group projects or collaborative activities to promote teamwork and a deeper understanding of kinematics concepts.

12. Concept Maps and Mind Maps:

• Ask students to create concept maps or mind maps that visually represent the relationships between different kinematics concepts.

13. Real-World Applications:

• Assign problems or scenarios that require students to apply kinematics principles to real-world situations, such as calculating the motion of objects or vehicles.

LEARNING OBJECTIVE:

1. Understanding of Fundamental Concepts:

- Define and understand fundamental kinematics concepts, including displacement, velocity, acceleration, and time.
- Differentiate between scalar and vector quantities in the context of motion.

2. Graphical Interpretation:

- Interpret and analyze position-time graphs and velocity-time graphs to describe and predict the motion of objects.
- Identify key characteristics of motion, such as constant velocity, uniform acceleration, and changes in direction from graphical representations.

3. Equations of Motion:

- Apply the equations of uniformly accelerated motion to solve problems involving displacement, initial velocity, final velocity, acceleration, and time.
- Understand and utilize the relationships among these kinematic variables.

4. Vector Addition in Two Dimensions:

- Analyze and solve problems related to motion in two dimensions by applying vector addition techniques.
- Calculate resultant velocities and displacements in cases of projectile motion or motion along inclined planes.

5. Problem-Solving Skills:

- Develop problem-solving skills by applying mathematical principles to real-world scenarios involving motion.
- Solve complex kinematics problems involving various types of motion, including free fall and circular motion.

6. Laboratory Skills:

- Conduct experiments related to kinematics, such as measuring displacement, velocity, and acceleration.
- Apply data collection, analysis, and graphical representation skills to experimental data.

7. Communication and Reporting:

- Effectively communicate findings, insights, and solutions related to kinematics concepts through written reports, presentations, and discussions.
- Utilize appropriate units, symbols, and conventions when expressing physical quantities and equations.

8. Safety Awareness:

- Recognize and practice safety precautions when working with equipment and conducting experiments related to motion.
- Prioritize safety in all laboratory and practical activities.

9. Real-World Applications:

- Apply kinematics principles to analyze and understand real-world scenarios, such as the motion of vehicles, projectiles, and celestial bodies.
- Recognize the relevance of kinematics in various fields, including physics, engineering, and sports.

10. Interdisciplinary Connections: - Understand the interdisciplinary nature of kinematics and its connections to other scientific and engineering disciplines. - Appreciate how kinematics concepts contribute to technological advancements and innovations.